
视频生成1.3B碾压14B、图像生成直逼GPT-4o!港科&快手开源测试时扩展新范式
视频生成1.3B碾压14B、图像生成直逼GPT-4o!港科&快手开源测试时扩展新范式测试时扩展(Test-Time Scaling)极大提升了大语言模型的性能,涌现出了如 OpenAI o 系列模型和 DeepSeek R1 等众多爆款。那么,什么是视觉领域的 test-time scaling?又该如何定义?
测试时扩展(Test-Time Scaling)极大提升了大语言模型的性能,涌现出了如 OpenAI o 系列模型和 DeepSeek R1 等众多爆款。那么,什么是视觉领域的 test-time scaling?又该如何定义?
《Why We Think》。 这就是北大校友、前OpenAI华人VP翁荔所发布的最新万字长文—— 围绕“测试时计算”(Test-time Compute)和“思维链”(Chain-of-Thought,CoT),讨论了如何通过这些技术显著提升模型性能。
当训练成本飙升、数据枯竭,如何继续激发大模型潜能?
推理性能提升的同时,还大大减少Token消耗!
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
大语言模型(LLM)近年来凭借训练时扩展(train-time scaling)取得了显著性能提升。然而,随着模型规模和数据量的瓶颈显现,测试时扩展(test-time scaling)成为进一步释放潜力的新方向。
「慢思考」(Slow-Thinking),也被称为测试时扩展(Test-Time Scaling),成为提升 LLM 推理能力的新方向。近年来,OpenAI 的 o1 [4]、DeepSeek 的 R1 [5] 以及 Qwen 的 QwQ [6] 等顶尖推理大模型的发布,进一步印证了推理过程的扩展是优化 LLM 逻辑能力的有效路径。
Ilya Sutskever(前 OpenAI 联合创始人兼首席科学家)在前几天召开的 NeurIPS 会议上表示,大模型的预训练已经走到了尽头。而 Noam Brown(OpenAI 研究员,曾带领团队开发出在德州扑克中战胜职业选手的 AI 系统 Pluribus)在近期关于 OpenAI O1 发布的采访中提到,提升 Test-Time Compute 是提升大模型答案质量的关键。